
ADAPT: A Cognitive Architecture for Robotics

D. Paul Benjamin (benjamin@pace.edu)
Computer Science Department, Pace University

1 Pace Plaza, New York, NY 10038 USA

Damian Lyons (dlyons@fordham.edu)
Computer Science Department, Fordham University

340 JMH Fordham University, 441 E. Fordham Rd., Bronx, NY 10458

Deryle Lonsdale (lonz@byu.edu)
Linguistics Department, Brigham Young University

Brigham Young University, Provo, UT 84602 by January 15, 2004

Abstract

ADAPT (Adaptive Dynamics and Active Perception for
Thought) is a cognitive architecture specifically designed for
robotics. The ADAPT architecture is in the initial state of
development. ADAPT manipulates a hierarchy of perceptual
and planning schemas that include explicit temporal
information and that can be executed in parallel. Perception is
active, which means that all perceptual processing is goal-
directed and context-sensitive, even down to the raw sensory
data. This paper describes the components of ADAPT and
how it differs from a number of existing cognitive
architectures.

Introduction
A number of cognitive models have been developed,
including EPIC (Kieras, Wood & Meyer, 1997), Soar
(Laird, Newell & Rosenbloom, 1987), and ACT-R
(Anderson, 1996). These models were developed
specifically to model human performance on a range of
tasks. The models were evaluated based on the degree to
which they fit human performance data on these tasks,
especially timing data. These tasks typically were solving
puzzles of various types and performing simple motor tasks,
or learning basic cognitive tasks such as word recognition or
sentence disambiguation. The model that incorporates a
detailed model of perception (EPIC) faithfully reproduces
the restrictions and timings of human perception
(particularly eyes and ears). Other architectures such as Soar
and ACT-R have borrowed this model from EPIC.

The motivation for the development of the ADAPT
cognitive architecture comes instead from robotics:
researchers want their robots to exhibit sophisticated
behaviors including use of natural language, speech
recognition, visual understanding, problem solving and
learning, in complex analog environments and in real time.
A growing number of robotics researchers have realized that
programming robots one task at a time is not likely to lead
to a robot with such general capabilities, so interest has
turned to cognitive robotic architectures as a natural way to
try to achieve this goal. ADAPT is an architecture under
development as part of a collaborative research effort on
robot cognition combining Pace University’s Robotics Lab

– csis.pace.edu/robotlab, Fordham University’s Robot Lab –
www.cis.fordham.edu/~lyons/rcvlab and the linguistics
department of Brigham Young University –
linguistics.byu.edu/nlsoar.

Robotics researchers are faced with a hurdle when
attempting to use cognitive architectures to control robots:
the architectures do not easily support certain paradigms of
perception and control that are mainstream in robotics. This
paper focuses on two such paradigms: adaptive dynamics
and active perception.

The design of ADAPT is distinguished by two
assumptions. The first is an assumption about the nature of
perception that differs from that of existing cognitive
architectures. Perception is modeled as an active process,
rather than as a passive one. This means that perception is
goal-directed and context-sensitive at every stage, including
the initial processing of input sensory data. Active
perception processes even low-level visual and auditory data
in a goal-directed manner. For example, if a robot is
crossing the street, it will not scan the entire visual field, but
rather turn its head in the direction of oncoming traffic. It
will not process all the parts of the resulting visual frame
equally, but will filter the data for large blobs that are
moving towards the robot, ignoring (or processing in a very
coarse way) the rest of the visual field. Such a robot will
perceive cars very differently depending on the goal and the
situation.

Active perception, and in particular active vision (Blake
& Yuille, 1992), is a major research area in robotics.
Existing cognitive architectures can be altered to perceive in
this way (Byrne, 2001) but this is the exception rather than
the rule. EPIC in particular does not perceive this way, and
this is a major limitation in its application to robotics.

The second assumption is that true parallelism is
necessary and that a robot must be able to reason about a
hierarchy of concurrent real-time actions. A robot typically
possesses a large number of moving components, e.g.
gripper joints, wheels or legs, pan-tilt camera units, camera
lenses that zoom, and these components may all be in action
simultaneously, in addition to actions occurring
simultaneously in the environment.

Many existing robot control paradigms consist of a

hierarchy of behaviors, e.g. (Brooks, 1991) and (Lyons and
Hendriks, 1995). Existing cognitive architectures do not
facilitate implementing such hierarchies.

ACT-R permits parallel perception and parallel operation
of motors, but has typically not been used to reason about
concurrent actions, and certainly not in a hierarchy. Soar
permits parallelism of a sort. Typically, actions in Soar are
modeled as operators, and Soar can execute only one
operator at a time per problem space; multiple spaces can be
active at a time, but the goals for these spaces must be
arranged in a stack. It is difficult, although not impossible,
to implement a hierarchy of behaviors in Soar. We need a
more flexible arrangement of goals that permits multiple
abstract behaviors that can share implementations. ADAPT
controls perception and action using schemas that are
represented declaratively in working memory. Multiple
schemas can be present and active simultaneously, and can
be connected into networks, thereby permitting the robot to
reason about a hierarchy of concurrent actions.

A deeper reason for the development of this architecture
is that it allows us to examine more deeply the
interrelationship between perception, problem solving and
the use of natural language. In the four architectures
mentioned above, these three aspects of cognition are
separate. In particular, perception is a peripheral activity
that is clearly separated from problem solving. We need to
permit researchers to explore issues such as how perception
is related to representation change in problem solving, and
how linguistic structures may affect problem solving.
ADAPT is an architecture intended to explore the
integration of perception, problem solving and natural
language at a deeper structural level.

The next section of this paper describes in more detail
these two limitations of existing architectures for robotics,
and the subsequent sections describe ADAPT. In many
respects, ADAPT is similar to ACT-R and in other respects
it resembles Soar. After discussing the motivations for our
architecture, we describe how ADAPT generalizes the
search control mechanisms of Soar and ACT-R.

Previous Work
The development and implementation of unified theories of
cognition (Newell, 1990) has become an important part of
cognitive science in the last twenty years. These
architectures strive to explain, implement and measure a
range of human cognitive activities. The three preeminent
architectures are EPIC, Soar and ACT-R. Each of these has
achieved a degree of success and is used in one or more
applications. Although a detailed examination of these
systems is outside the scope of this paper, we will briefly
examine the perceptual systems and planning structures
employed by them.

Each of these architectures is based on a set of
productions that are matched against a working memory.
One or more of the productions that match are fired, with
the results affecting working memory and possibly causing
external effects. The systems vary according to how the

productions are chosen, and whether parallel firing of
productions is permitted. ACT-R chooses a single
production to fire. EPIC permits only one action production
to fire. Soar selects only one operator at a time in each
problem space to perform actions.

The EPIC cognitive architecture was specifically
developed to model human perception, and thus has a well
developed perceptual model. This model has been largely
imported into ACT-R, and also serves as the perceptual
basis for EPIC-Soar (Chong, 1998), so an examination of
EPIC covers the basics of perceptual modeling in all three
architectures, although Soar itself has no perceptual model
and is unconstrained.

EPIC’s perceptual model includes simulations of human
eyes and ears, as well as basic motor functions and some
tactile sensing. These models include details such as the
sizes of various retinal zones. There is no direct provision
for non-human modalities, e.g., laser range finding. All
perceptual mechanisms fire in parallel, and their output is
placed in working memory. This output is only the final
output of visual and auditory pattern recognizers. There is
no access to sensory data or to the pattern recognition
algorithms, so the pattern recognition is fixed and goal-
independent. This prevents use of active perception.

The three architectures vary considerably in their
approach to goals and problem solving. EPIC is the
simplest, as it has no mechanism for choosing between
actions. The human programmer must model the actions of
the system so that no conflicts are possible. Parallel
execution of actions is possible, but only if the actions that
use distinct peripheral processors. There is no planning and
goals do not determine the system’s actions, so that by itself
EPIC is not adequate for robotics.

Soar maintains an explicit goal stack. The actions that are
possible at each step (the “operators”) are attached to the
state corresponding to each goal. Soar subgoals (in a sense,
calling itself recursively by creating a new goal and state) to
select an operator when more than one is possible. Typical
Soar programming models the task actions of the system as
operators, which means that only one action is possible per
goal at a time. This severely restricts Soar’s usefulness in
robotics, as the system can have difficulty reasoning about a
hierarchy of concurrent actions and concurrent goals that is
not organized as a stack (Laird & Rosenbloom, 1990).

ACT-R forbids parallelism, and uses a Bayesian
mechanism to select one preferred action. It maintains a
goal stack that is part of this determination, so that only one
goal is active at a time. ACT-R has a long-term declarative
memory (Soar does not) and declarative “chunks” of
information are retrieved from long-term declarative
memory according to the strength of their association with
the current goal and contents of working memory. One
production is chosen to fire based on its utility. As with Soar
and EPIC, ACT-R does not permit two independent actions
to be executed in parallel, which can give it difficulty
representing plans.

Our Approach to Perception and Planning
ADAPT resembles the above architectures in many ways. It
is a production-based architecture with a working memory,
and matches productions against working memory during
each cycle in the same manner as these architectures. All the
matching productions fire, as in Soar, and place their results
in working memory. ADAPT possesses a long-term
declarative memory, as ACT-R does, in which it stores
sensory-motor schemas that control its perception and
action. All perceptual processors fire in parallel, as in EPIC,
but place their low-level sensory data into working memory,
where it is processed by the cognitive mechanism. Thus,
ADAPT strongly resembles EPIC-Soar, with the additional
property that general schemas are stored permanently in
working memory.

Robots are not limited to human sensors or effectors, e.g.
robots can have lasers and wheels and non-human grippers.
So ADAPT generalizes some of the structures found in
other cognitive architectures, as well as relaxing the
adherence to human timing data for the performance of non-
human sensors or effectors.

EPIC and ACT-R include a processing bottleneck, which
is that the architecture can process only one goal at a time
and execute only one action at a time. (EPIC has this
bottleneck, but the programmer must enforce it.) In
ADAPT, we could have dropped this bottleneck and
permitted the architecture to have multiple goals active at
the same time (so the goals would not be organized on a
stack), and permitted the architecture to execute multiple
actions simultaneously. After all, our stated goal is to do just
that. However, we have included this bottleneck in ADAPT,
too, and it is necessary for us to explain why.

We draw a distinction between the goals that are task
goals, e.g. “find the blue block”, and those that are goals of
the architecture, e.g. “start the schema that scans the
environment for a segment of a given color”. Similarly, we
distinguish between task actions, e.g. “pick up the block”,
and architectural actions, e.g. “start the gripper-closing
schema”. Our goal is to reason about concurrent goals and
actions in the task. As we have pointed out, the task
environment is complex; there are many things to be
perceived, and complex actions to be coordinated. But
architectural goals and actions cannot be allowed to
multiply in the same fashion as task goals and actions,
because the complexity of the architecture would become
too great; the architecture needs to be focused on one goal at
a time and to execute one action at a time. This not only
leads to simplicity of implementation (avoiding the need for
a full-blown implementation of something like CSP
(Schneider, 1999)), but also keeps the architecture from
spending its time multiplying goals rather than solving
them.

We accomplish this dichotomy by partitioning the actions
and goals into an architectural part consisting of
architectural goals and actions and a task part consisting of
task-specific goals and actions. We restrict the architectural
part to one active goal (it has a goal stack) and one

architectural action at a time. The architectural part is
procedurally represented, i.e. the system can execute the
actions but cannot examine their internal representation. We
represent the task goals and actions declaratively in working
memory as well as procedurally. There can be as many
active task goals and actions in working memory as the
system wants. We call these goals and actions “schemas”.

Schemas
The term “schema” has a long history in artificial
intelligence, cognitive modeling and brain science, which
we do not have space to recapitulate in full here. Minsky’s
frames are a type of schema, as are Schank’s scripts. Arbib
(1992) has developed a schema theory that essentially
describes our use of the term. His schema theory is
especially useful because it has been precisely specified
with a formal semantics (Steenstrup, Arbib & Manes, 1983)
and implemented in a language for real-time concurrent
perception and action (Lyons & Arbib, 1989). We use this
language, called RS (for Robot Schemas), to give our
cognitive model the concurrent, real-time reasoning
capability that it needs.

One very important aspect of schemas is that they
combine procedural and declarative knowledge, i.e. all
knowledge in a schema can be accessed declaratively for
purposes such as communication and generalization, and
accessed procedurally to solve problems. This distinguishes
schemas from Soar’s operators or ACT-R’s declarative
chunks. This combination of procedural and declarative
representations is of central importance, as this permits
behavioral knowledge to be both executed in procedural
form as well as communicated by natural language in
declarative form. Additionally, representing schemas in
declarative form permits ADAPT to reason about and
transform the hierarchy of schemas. For example, ADAPT
can apply inductive inference operators to the declarative
forms of schemas to generalize them.

Schemas are general patterns of perception and action,
and are stored permanently in working memory. Each
schema has a sensory part and a motor part, representing the
goal of executing a particular motion depending on certain
perceptual conditions. The motor parts of the schemas are
the task actions. Schemas also contain explicit temporal
information, e.g. about intervals of time during which an
action must take place. General schemas are instantiated to
create schema instances that are connected to each other to
form a network. A schema can be abstract, and either the
sensory or motor part can be absent (or trivially true). The
part of working memory that contains the library of schemas
that can be instantiated and activated is similar in a sense to
the declarative memory where ACT-R stores its chunks.

Schemas control the actual motors as a side effect of
placing control information into working memory, which
causes the robot to move. Since multiple schemas can be
active simultaneously, parallel schema executions are
possible. It is the responsibility of the system (while it is
planning) to ensure that simultaneous executions can be

executed together. As only one architectural action is
executable at a time, the architecture cannot start two
schemas simultaneously or instantiate the variables of two
schemas simultaneously. Specifically, it cannot initiate the
processing of two different modes of sensory input at the
exact same time. This respects the cognitive data available
on dual tasking (Gopher & Donchin, 1986), so that
compatibility is retained to some extent with human
cognitive data. But this does not result from a specific
decision to retain this compatibility, but from the decision to
retain the processing bottleneck to keep the system focused.

ADAPT plans by transforming a hierarchy of schemas
(there is a root schema “interact with the environment” to tie
all the schemas together.) At each step, ADAPT can
perform one of the following steps:

• refine a schema into subschemas,
• instantiate variables in a schema (this includes

connecting two or more schemas by binding their
variables together),

• start execution of a schema,
• suspend execution of a schema, or
• terminate and remove a schema.

Thus, ADAPT operators work at the executive level
rather than at the task level, continually modifying the
schema hierarchy. Task-level actions are executed by the
motor parts of the schemas.

ADAPT is flexible enough to implement general
concurrent real-time robot programs. The behavioral
approach we favor is not a traditional planning approach but
rather one of “adaptive dynamics” in which the system tries
to use one or more simple behaviors to generate a complex
behavior (Benjamin, 2000; Lyons & Hendriks, 1995). For
example, if the robot is trying to pick up a ball that is rolling
on the floor, it activates three schemas: the grasping schema,
the move-arm schema and the tracking schema. The
grasping and move-arm schemas are connected to the
tracking schema. As the rolling ball is tracked by the
tracking schema, information is fed independently to the
two motor schemas to control the rate of grasping and
movement, so that the ball will be caught. This is very
different from and much simpler than planning the effects of
interleavings of small arm and finger movements.

This approach relies very heavily on the representation
used by the system; we give ADAPT the ability to
reformulate its knowledge to try to find simple schemas that
generate complex behaviors (Benjamin, 1992; Benjamin,
1994). One of the central research goals of this project is to
investigate mechanisms for solving problems by
reformulation, as explained by Duncker (1945).

Search Control in ADAPT
ADAPT possesses a very general mechanism for selecting
one action to perform. This mechanism is essentially the
same as Soar’s subgoaling mechanism, because the
emphasis in ADAPT is on problem solving by search, as it

is in Soar. The philosophy behind this mechanism is that the
system should be capable of bringing all its knowledge to
bear on the central issue of selecting its actions. ACT-R
does not permit this, instead using a Bayesian mechanism to
select actions based on their anticipated gain.

However, much robotics research uses such nonsymbolic
mechanisms. In particular, there is a very large body of
robotics research using neural networks, so a general robotic
cognitive architecture should be able to model nonsymbolic
reasoning and learning mechanisms, which Soar does not.
Although the mechanism ADAPT uses to select actions is
Soar-style subgoaling, the presence of the declarative
schema memory permits ADAPT to implement ACT-R
nonsymbolic mechanisms, too. This is accomplished by
storing the information that ACT-R uses to compute utilities
with the declarative schemas, so that each schema has stored
with it the estimate of the probability that it will lead to
eventual achievement of the current goal and the estimate of
the cost to achieve the goal. Both probability and cost are
measured in time, as in ACT-R. The utility computation is
performed explicitly with ADAPT actions, rather than in the
mechanism as ACT-R does.

When selecting among multiple schemas, ADAPT
reaches an “impasse” just as Soar does and subgoals to
choose one schema. It can choose either to use the Bayesian
estimate or to search. This decision can be made based on
factors such as the time available. This generalization of the
selection mechanisms of ACT-R and Soar permits ADAPT
to model flexible selection strategies that combine symbolic
and nonsymbolic processing.

For example, in the example given above of the rolling
ball, the robot might need to decide whether to take a step
closer to the path of the rolling ball to make it easier to pick
up. If this decision must be made immediately, the robot
will use its estimated gain for such movements in general. If
there is time to deliberate, the robot can reason about the
length of its arm and how far it is from the path of the ball to
decide if it will have a good chance to succeed.

Learning in ADAPT
There are two different methods of learning in ADAPT:

procedural learning of search control and inductive
inference of schemas.

ADAPT utilizes a method of learning search control that
is borrowed from Soar. ADAPT generates procedural
“chunks” when goals are satisfied in exactly the same way
that Soar does. These chunks are productions whose left-
hand sides contain all the working memory elements that
were referenced in making the search-control decision, and
whose right-hand side is the decision. It is well understood
how Soar speeds up its search control by learning search
control chunks (Rosenbloom, Laird & Newell, 1993).

A search-control chunk that ADAPT learns may use the
Bayesian estimate to make the choice of action, in which
case the chunk performs in one step the same choice that
ACT-R would make. Or the chunk may compile the results
of a search of alternatives, in which case the chunk performs

just as a Soar chunk does.
ADAPT can learn a chunk that combines these two

methods to select a schema based on a combination of gain
and search.

The declarative representation of schemas permits
ADAPT to transform schemas in many ways. In particular,
ADAPT can perform inductive inference on schemas, e.g.
by replacing a constant with a variable or by enlarging an
interval of permitted numeric values. These changes are
performed by operators that examine the execution history
and hypothesize more general schemas that are added to the
declarative memory. As these new schemas are tried in
future situations, their successes and failures are recorded in
the schemas.

An Implementation of ADAPT
An initial implementation of ADAPT has been completed.
Testing has just begun using a Pioneer P2 robot that is
equipped with stereo color vision, microphone and speakers,
sonars and touch sensors.

The implementation is within the Soar system, because of
the similarity between ADAPT and Soar. A declarative
memory has been added to Soar for the general schemas,
together with a set of operators that instantiate a general
schema and transform the instance into a set of productions.
Additional operators have been added to start, pause and
stop schemas. Schemas are executed by a runtime system
that implements the RS schema system (Lyons & Arbib,
1989) in the Colbert language, which is a behavior-based
language created by Kurt Konolige and provided with
Pioneer robots.

Currently, ADAPT has access only to sonar and bump-
sensor readings. This permits simple navigation and pushing
behaviors, but nothing more. Our plans are to complete the
integration of language and vision capabilities within two
months. The existing version of ADAPT has a cycle time of
50ms and is very successful at guiding the robot at basic
navigation tasks such as moving from one room to another
and avoiding obstacles.

The language component will be provided by NL-Soar
(Lonsdale, 1997; Lonsdale, 2000; Lonsdale, 2001), which is
currently being ported to Soar8 from Soar7 as part of our
collaboration with Brigham Young University. It will be
available in May and will be integrated into the system.

The vision component consists of two pieces: a bottom-up
component that is always on and is goal-independent, and a
top-down active component. Both components exist but the
full integration within ADAPT is not complete. We
anticipate a full integration by July.

Testing and Evaluating ADAPT
We have selected an important and flexible class of mobile
robot applications as our example domain: the
“shepherding” class. In this application, one or more mobile
robots have the objective of moving one or more objects so
that they are grouped according to a given constraint. An
example from this domain is for a single mobile platform to

push an object from its start position over intermediate
terrain of undefined characteristics into an enclosure.
Another example is for it to push a set of objects of various
shapes and size all into the enclosure. A more complex
example is to group objects so that only objects of a
particular color are in the enclosure.

This class of tasks is attractive for two reasons. The first
is that it includes the full range of problems for the robot to
solve, from abstract task planning to real-time scheduling of
motions, and including perception, navigation and grasping
of objects. In addition, the robot must learn how to push one
or more objects properly. This range of demands is ideal for
our purposes, because it creates a situation in which
complex hierarchies of features and constraints arise. Also,
the tasks can be made dynamic by including objects that can
move by themselves, e.g. balls or other robots.

The second reason is that we can embed lots of other
problems in it, especially those that have been examined by
cognitive psychology. For example, we can create an
isomorph of the Towers of Hanoi task by having three
narrow enclosures and adding the constraint that no object
can be in front of a shorter object (so that all objects are
always visible by the observer). (see Figure 1) The three
enclosures act as the three pegs in the Towers of Hanoi, and
the constraint is isomorphic to the constraint that no disk
can be on a smaller disk in the Towers of Hanoi. The robot
(gray) must move the three boxes from the leftmost column
to the rightmost. It can push or lift one box at a time. The
front area must be kept clear so the robot can move; there
can be no boxes left in this area.

This creates a situation in which the robot can be
presented with a Towers of Hanoi problem in a real setting
with perceptual and navigational difficulties, rather than just
as an abstract task. This permits us to evaluate the robot’s
problem-solving and learning capabilities in a way that
permits comparison with human data.

Figure 1

Similarly, we can embed bin-packing problems by
making them enclosure-packing problems. Also, we can

Observer

1 2 3

embed sorting problems, and embed block-stacking
problems. In this way, many existing puzzles and tasks can
be embedded in a realistic setting and posed to the robot.

Summary
The fields of cognitive psychology and robotics have much
to offer each other. The development of robot cognitive
architectures is an attempt to apply the results of cognitive
modeling to the difficult problems faced by robotics
research. ADAPT is a cognitive architecture specifically
designed to permit robotics researchers to utilize well-
known robotics research in areas such as active perception
and adaptive dynamics within a cognitive framework. This
architecture is still in its infancy, and in particular has not
yet been integrated with vision or language. The goals of
this research are to expand the capabilities of robots and
simultaneously to expand and generalize the capabilities of
existing cognitive models.

Acknowledgements
We would like to thank Frank Ritter for many helpful
comments and pointers to relevant work.

References
Anderson, J. R. (1996). ACT: A simple theory of complex

cognition. American Psychologist , 51, 355-365.
Arbib, M. A. (1992). Schema Theory, in S. C. Shapiro

(Ed.), Encyclopedia of Artificial Intelligence (2nd edition),
Wiley-Interscience.

Benjamin, D. Paul, (1992). Reformulating Path Planning
Problems by Task-preserving Abstraction, Journal of
Robotics and Autonomous Systems, 9, pp.1-9.

Benjamin, D. Paul, (1994). Formulating Patterns in Problem
Solving, Annals of Mathematics and AI, 10, pp.1-23.

Benjamin, D. Paul, (2000). On the Emergence of Intelligent
Global Behaviors from Simple Local Actions, Journal of
Systems Science, special issue: Emergent Properties of
Complex Systems, Vol. 31, No. 7, pp.861-872.

Blake, A., and Yuille, A., (Eds,) (1992). Active Vision , MIT
Press, Cambridge, MA.

Brooks, R.A., (1991). How to build complete creatures
rather than isolated cognitive simulators, in K. VanLehn
(ed.), Architectures for Intelligence, pp. 225-239,
Lawrence Erlbaum Assosiates, Hillsdale, NJ.

Chong, R.S. (1998). Modeling dual-task performance
improvement with EPIC-Soar. Proceedings of the
Twentieth Annual Conference of the Cognitive Science
Society, Hillsdale, NJ, Lawrence Erlbaum.

Duncker, Karl, (1945, 1972). On Problem Solving, in
Dashiell, John, (Ed.) Psychological Monographs,
Greenwood Press, Westport, CT.

Gopher, D., & Donchin, E., (1986). Workload: An
Examination of the Concept, in K.R.Boff, L. Kaufman, &
J.P.Thomas (Eds.), Handbook of Perception and Human
Performance, Vol. II: Cognitive Processes and Human
Performance, pp. 41.1-41.49, New York, Wiley.

Kieras, D.E., Wood, S.D., and Meyer, D.E. (1997).
Predictive engineering models based on the EPIC

architecture for a multimodal high-performance human-
computer interaction task, ACM Transactions on
Computer-Human Interaction 4, 230-275.

Laird, J.E., Newell, A. and Rosenbloom, P.S., (1987). Soar:
An Architecture for General Intelligence, Artificial
Intelligence 33, pp.1-64.

Laird, J. E., & Rosenbloom, P. S. (1990). Integrating,
execution, planning, and learning in Soar for external
environments. Proceedings of the 8th National
Conference on Artificial Intelligence (pp. 1022-1029).
Hynes Convention Centre: MIT Press.

Lonsdale, Deryle, (1997). Modeling Cognition in SI:
Methodological Issues, International journal of research
and practice in interpreting, Vol. 2, no. 1/2, pages 91-
117; John Benjamins Publishing Company, Amsterdam,
Netherlands.

Lonsdale, Deryle, (2000). Leveraging Analysis Operators in
Incremental Generation, Analysis for Generation:
Proceedings of a Workshop at the First International
Natural Language Generation Conference, pp. 9-13;
Association for Computational Linguistics; New
Brunswick, NJ.

Lonsdale, Deryle, (2001). An Operator-based Integration of
Comprehension and Production, LACUS Forum XXVII,
pages 123–132, Linguistic Association of Canada and the
United States.

Lyons, D.M. and Arbib, M.A., (1989). A Formal Model of
Computation for Sensory-based Robotics, I E E E
Transactions on Robotics and Automation 5(3), June.

Lyons, D.M. and Hendriks, A., (1995). Exploiting Patterns
of Interaction to Select Reactions, Artificial Intelligence
73, Special Issue on Computational Theories of
Interaction, pp.117-148.Newell, Allen, (1990). Unified
Theories of Cognition, Harvard University Press,
Cambridge, Massachusetts.

P. S. Rosenbloom, J. E. Laird, and A. Newell, (1993). The
SOAR Papers. MIT Press.

S. Schneider, (1999). Concurrent and Real-time Systems:
The CSP Approach. Wiley.

Martha Steenstrup, Michael A. Arbib, Ernest G. Manes,
(1983). Port Automata and the Algebra of Concurrent
Processes. JCSS 27(1): 29-50.

