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Abstract: 

 In this paper we address the problem of automatically selecting and predicting 

landmarks for use in wayfinding on a mobile robot.  Our constraints for wayfinding 

landmarks are that we be able to uniquely recognize the landmark from a visual image 

and be able to tell whether the landmark is growing nearer or farther away. We employ 

back-propagation to teach a multilayer neural network to predict the image location and 

appearance of future landmarks based on the appearance and image location of currently 

visible landmarks.  

 We employ a hybrid reactive/deliberative architecture [2].  The reactive 

component collects candidate landmark feature measurements while the robot explores its 

(previously unknown) environment.  For the deliberative component, we use a neural 

network running on a Beowulf cluster to process the large amount of data being collected 

from camera.  We describe our architecture and algorithm in detail and present data 

gathered using our Pioneer DX2 robot to learn wayfinding landmarks. 



1.0 Introduction: 

A robot traversing unknown terrain needs to have a method to find its way back.  

For example a Search & Rescue robot [9] winding through a complicated rubble field 

looking for victims or other targets needs to have a way to return the target to base for 

medical help or backup.  Clearly an a-priori map of a rubble field would not be available.  

One approach could be to construct a detailed geometric map of the area as the robot 

moves.  This approach has many advantages but has several practical problems.  The 

geometric features of a rubble field are less easy to define than indoor or outdoor natural 

terrain; and the landscape may be ephemeral ñ changing rapidly due to weather, or due to 

local rubble motion, or even due to motion of the robot.  An alternative approach is to 

learn qualitative features of the landscape: landmarks that will help in navigation at a 

course level. 

When the robot is in an area it doesnít know, it becomes necessary for it to 

identify and learn a useful set of landmarks in its surroundings, so that it can return 

through the area, knowing exactly where to go, and whatís around.  Throughout this 

learning process the robot must identify potential landmarks based on sensory 

information, learn where those landmarks are, and then be able to predict, with 

reasonable accuracy, where to expect to sense the next landmark. 

Insects appear to employ a ìvisual snapshotî concept of landmark navigation [5] 

and we are inspired by this in our purely image based representation and prediction 

approach.  In this paper we will present an approach to landmark identification and 

learning.  We employ a multilayer neural network to learn to predict expected image 

landmark locations based on the image locations of current landmarks.  Because we 



expect landmark learning to be an ongoing, data-intensive background computation, we 

also propose a novel landmark learning architecture based on the hybrid 

reactive/deliberative architecture [2] consisting of reactive landmark identification & 

prediction coupled to a concurrent and separate landmark learning system running on a 

15 node Beowulf Cluster. 

 

2.0 Literature Review: 

Bayesian landmark learning [6] for robot localization involves the use of 

recursive Bayesian estimation to accurately locate features of the environment around the 

robot so that the robotís position and orientation with respect to the environment can be 

calculated. In [6] the network was trained to 

minimize sensory extraction errors so it was 

better able to extract landmarks in the future. 

Previous work done to solve the problem of 

learning landmarks for wayfinding include using 

edge density to determine what is a candidate for 

a landmark [3].  High edge density tended to 

mean that there was furniture or a wall, 

something that would make a good landmark 

present.  The candidates were then grouped by 

which candidates corresponded to similar visual 

regions of the environment. 



In [4], a pattern search engine was used to learn the patterns of the landmarks.  

Patterns were 2-D images containing odd but distinct shapes, symbols, text or a 

combination of a few of these.  This worked well with landmarks that contained text, 

because the text created the patterns that were picked up by the system. 

For our application, we expect that landmarks may modify their appearance and 

location while the robot is active. We would like therefore to have a more qualitative 

concept of landmark, while retaining the ability to use the landmark to guide wayfinding.  

One interesting piece of work was the studying of insects and how they were able to learn 

landmarks [5].  One such method was the Turn-Back-and-Look method used by bees.  

When observing the behavior of bees it was discovered that whenever a bee finds itself in 

an unfamiliar place, it turns around and views the landscape behind it.  In this manner it 

is able to analyze where it has been and teach itself how where it is relates to what it 

already knows.  This is similar to how we designed our system, it stores what landmarks 

it has seen previously, and where they are.  It can use this information to get an idea of 

where the new landmarks it is seeing are. 

In [7], a neural network is used to learn the terrain of the land as viewed from a 

camera mounted on a tractor.  This work employs a grid overlayed on the camera view.  

Features can be observed and calculated for each cell in the grid, thus allowing for easy 

comparison between areas of an image. We will also adopt this approach for landmark 

feature calculations. 

 



3.0 Identifying Visual 

Landmarks: 

 To identify visual landmarks 

we took as input a visual image as 

collected by the X10 camera 

mounted on the Pioneer.  The image 

was divided into a grid Figure 2.  

This way, feature measurement 

could take place on it, and be 

evaluated by analyzing the features on particular grid squares and how they compared 

with the same features in the surrounding grid squares.  The features calculated for each 

grid square were normalized average color and intensity where i and j refer to individual 

pixel coordinates within the grid square: 

 

and standard deviation: 



 A good landmark is one in which the standard deviation of the average 

color between grid squares is fairly low.  When this is the case, it signifies that the 

landmark is large enough to cover multiple grid squares, and the color is contiguous 

enough such that there isnít too much difference. 

A good landmark can be represented mathematically.  If both the average 

normalized red and average normalized green fall within one standard deviation of the 

averages of an adjacent grid square, the adjacent squares are considered to be good 

landmarks. 

  (rnavg2 ñ rnstdDev2) < rnavg1 < (rnavg2 + rnstdDev2) 

  (gnavg2 ñ gnstdDev2) < gnavg1 < (gnavg2 + gnstdDev2) 

A bad landmark is one in which the standard deviation of the average color is 

high.  When this is the case it can signify a few things.  One of which is that the landmark 

does not span multiple grid squares.  This is not a good landmark because you cannot 

distinguish it from other aspects of the image easily.  Another thing it can signify is a 

massive change in coloration.  This tends to not be a good landmark because typically 

massive color changes indicate smaller objects around one another, which are difficult to 

see from a distance. 

As the robot moves forward, the landmarks tend to 

move away from the center of the image at an angle.  The 

direction they move depends on what quadrant the landmark 

is currently located in.  As would be expected, when the 

robot moves backward, the landmarks tend to move toward 

the center of the image at an angle. 



 

4.0 Learning Landmarks: 

 

 

 The neural network in Figure 4 contains six (6) inputs, six (6) outputs, and six (6) 

hidden nodes.  The function of this neural network is to take in the landmark information, 

and predict where the next landmark will appear.  This neural network uses a standard 

backpropagation algorithm [8]. 

The input to the neural network is information about the closest landmark to the 

robot.  This information is the center Cartesian x and y grid coordinate of the landmark, 



the normalized average red value, the normalized average green value, the number of grid 

squares the landmark takes up, and the change in the number of grid squares since the last 

image was observed.  The output of the neural network is the same information, except 

for the predicted landmark. 

 Because of the massive amount of data the robot will be taking in and processing, 

the landmark prediction will be extremely data intensive and always active ñ as long as 

the robot is active, data is being collected and analyzed.  Because of this, we used a 

Beowulf cluster. 

 We plan to implement a system that will allow the robot to communicate with the 

Beowulf cluster through an open socket.  The PC will send the Beowulf the data collected 

by the robot.  The Beowulf cluster will receive this data and feed it through the neural 

network.  Once this is complete, the Beowulf cluster will send the PC the information on 

the predicted landmark. 

Currently the Beowulf cluster is being used to train the neural network.  The 

training data is copied by hand to the Beowulf, and after the training is complete, the 

weights data is copied by hand again to the PC controlling the robot. 

 

Experimental Method: 

We began by creating a small course Figure 5 for the Pioneer robot to traverse so 

that it could gather learning data to train the network.  The images collected by the 

camera were divided into a grid, so that the robot could use the grid squares as spatial 

coordinates.  As the robot traversed the course it gathered information on landmark 



locations, their average colors, their sizes, and 

the difference in size between the current and 

previous images.  This data was outputted to a 

file for use at a later time. 

The Pioneer robot Figure 1 is outfitted 

with two sonar arrays, each containing eight (8) 

sonar for a total of sixteen (16).  The camera 

mounted on the front is an X10 Wireless 

Camera, Model #VR36A.  There is a wireless 

modem mounted on the back of the Pioneer for 

wireless connectivity.  It is an ACT0106 Lo-

speed Serial Ethernet device. 

There were three training landmarks that were used.  The first of which was an 

orange box containing black writing and a green image of a computer hardware card 

Figure 7.  The box was of length 12î and width 10î and height 1.5î.  The second was a 

dark blue bound notebook of length 11î, and width 8.75î and height 0.5î Figure 8.  The 

third was a silver Aibo robotic dog standing on all fours of length 10î and width 6î and 

height 11î Figure 9.  These landmarks were positioned at alternating points on either side 

of the robot starting from the left approximately two (2) feet apart. 

As the robot traversed its data gathering course the camera image was displayed 

on the screen containing where it thought all landmarks where.  This was accomplished 

by outlining the grid squares containing the landmarks in green Figures 10-12. 



 

 

A three layer neural network was built next containing six (6) nodes in the hidden 

layer.  This network was trained on the data gathered from the robots traversal of the 

course.  The learning part of the network took place on a sixteen (16) node Beowulf 

cluster and the weights data was exported back to the PC containing the robotics code for 

testing.  A backpropagation algorithm was implemented to learn the weights. 





 Now that the network was built 

and trained, the testing process could 

begin.  There were four testing cases 

that took place on the network: forward 

landmark recognition, reverse landmark 

recognition, arbitrary start forward 

landmark recognition and arbitrary start 

reverse landmark recognition: 

• Forward landmark recognition testing was done by traversing the robot through  

the course in the same direction as the training.   

• Reverse landmark recognition testing was done by traversing the robot through 

the course in the reverse direction as the training.  

• Arbitrary start forward landmark recognition was done by placing the robot in an 

arbitrary location on the course, and traversing it through in the same direction as 

the training.   

• Arbitrary start reverse landmark recognition was done by placing the robot in an 

arbitrary location on the course, and traversing it through in the reverse direction 

as the training. 

In all cases, the neural network took as input the landmark closest to the robot, 

and the output was the location and size of the next landmark.  The predicted landmark 

was displayed on the screen by outlining the grid squares containing the predicted 

location of the landmark in red Figures 13-18. 



 

5.0 Results: 

 The results of all the testing cases were good.  The standard of error was 

calculated using the formula: 

(predictedx ñ actualx)2 + (predictedy ñ actualy)2 + (predictedsize - actualsize)2 

The forward landmark recognition testing results can be seen in Figure 19. The 

reverse landmark recognition testing results can be seen in Figure 20.  The arbitrary start 

location forward landmark recognition testing results can be seen in Figure 21.  The 

arbitrary start location reverse landmark recognition testing results can be seen in Figure 

22. 

 The results of the forward landmark recognition testing were good.  The neural 

network was able to pinpoint the y-axis location of the next landmark 38% of the time.  

Outside of this it was able to predict within three grid squares 62% of the time.  It was 

able to pinpoint the x-axis location 45% of the time.  Outside of this it was able to predict 

within three grid squares 16% of the time.  The other 39% of the time the neural network 

was off by more.  The neural network was able to pinpoint the size of the next landmark 

21% of the time.  Outside of this it was able to predict within three grid squares of the 

size 45% of the time.  The other 34% of the time the neural network was off by more.  

These results are graphed in Figures 23ñ25. 

 The results of the reverse landmark recognition testing were also good.  The 

neural network was able to pinpoint the y-axis location of the next landmark 33% of the 

time.  Outside of this it was able to predict within two grid squares the other 67% of the 

time.  It was able to pinpoint the x-axis location of the next landmark 40% of the time.  



Outside of this, it was able to predict within three grid squares 20% of the time.  The 

other 40% of the time, the neural network was off by more.  The neural network was able 

to pinpoint the size of the next landmark 12% of the time.  Outside of this it was able to 

predict within three grid squares of the size 52% of the time.  The other 36% of the time, 

the neural network was off by more.  These results are graphed in Figures 26-28. 

 The results of the arbitrary start location forward landmark recognition testing 

were the best of all the tests performed.  The neural network was able to pinpoint the y-

axis location 24% of the time.  Outside of this it was able to predict within two grid 

squares the other 76% of the time.  It was able to pinpoint the x-axis location 57% of the 

time.  Outside of this it was able to predict within three grid squares 34% of the time.  

The other 9% of the time, the neural network was off by more.  The neural network was 

able to pinpoint the size of the next landmark 19% of the time.  Outside of this it was able 

to predict within three grid squares the size 62% of the time.  The other 19% of the time, 

the neural network was off by more.  These results are graphed in Figures 29-31. 

 The results of the arbitrary start location reverse landmark recognition testing 

were also very good.  The neural network was able to pinpoint the y-axis location 29% of 

the time.  Outside of this it was able to predict within two grid squares the other 71% of 

the time.  It was able to pinpoint the x-axis location 33% of the time.  Outside of this it 

was able to predict within three grid squares 24% of the time.  The other 43% of the time 

the neural network was off by more.  The neural network was able to pinpoint the size of 

the next landmark 5% of the time.  Outside of this it was able to predict within the three 

grid squares the size 43% of the time.  The other 52% of the time, it was off by more.  

These results are graphed in Figures 32-34. 



Figure #19: Forward landmark recognition testing results 
Predicted Actual (p-a)2 

yc xc size yc xc size yc xc size 
ΣΣΣΣ(p-a)2 

8 9 11 8 13 11 0 16 0 16 
8 4 10 9 14 6 1 100 16 117 
8 6 10 9 14 18 1 64 64 129 
8 4 10 7 4 5 1 0 25 26 
8 4 10 7 4 5 1 0 25 26 
8 4 10 8 4 6 0 0 16 16 
8 4 10 7 4 7 1 0 9 10 
8 4 10 7 4 7 1 0 9 10 
8 4 10 7 4 7 1 0 9 10 
9 15 12 8 4 9 1 121 9 131 
8 5 10 7 3 10 1 4 0 5 
8 8 11 8 3 11 0 25 0 25 
8 4 10 9 17 10 1 169 0 170 
8 4 10 8 3 14 0 1 16 17 
8 8 11 8 13 11 0 25 0 215 
8 4 10 9 15 12 1 121 4 126 
9 14 12 9 14 19 0 0 49 49 
8 4 10 7 4 5 1 0 25 26 
8 4 10 7 4 4 1 0 36 37 
8 4 10 8 4 6 0 0 16 16 
8 4 10 7 4 7 1 0 9 10 
8 4 10 7 4 7 1 0 9 10 
8 4 10 7 4 7 1 0 9 10 
9 15 12 7 4 10 4 121 4 129 
8 5 10 8 4 12 0 1 4 5 
8 6 10 8 3 12 0 9 4 13 
8 4 10 9 17 10 1 169 0 170 
8 4 10 8 3 14 0 1 16 17 
8 9 11 8 13 11 0 16 0 16 
8 4 10 9 15 12 1 121 4 126 
8 8 11 9 15 16 1 49 25 75 
8 4 10 7 4 6 1 0 16 17 
8 4 10 8 4 6 0 0 16 16 
8 4 10 11 15 7 9 121 9 139 
8 4 10 7 4 7 1 0 9 10 
8 4 10 7 4 7 1 0 9 10 
8 4 10 7 4 8 1 0 4 5 
8 9 11 8 4 10 0 25 1 26 
8 5 10 8 3 12 0 4 4 8 
8 5 10 8 3 13 0 4 9 13 
8 4 10 9 17 10 1 169 0 170 
8 3 13 8 3 13 0 0 0 0 



Figure #20: Reverse landmark recognition testing results 
Predicted Actual (p-a)2 

yc xc size yc xc size yc xc size 
ΣΣΣΣ(p-a)2 

8 4 10 8 3 17 0 1 49 50 
9 15 12 8 3 15 1 144 9 154 
9 11 11 8 3 11 1 64 0 65 
8 4 10 10 17 7 4 169 9 182 
8 10 11 8 3 10 0 49 1 50 
8 4 10 7 4 11 1 0 1 2 
8 4 10 7 4 8 1 0 4 5 
8 4 10 7 4 8 1 0 4 5 
8 4 10 7 4 8 1 0 4 5 
8 4 10 7 4 7 1 0 9 10 
8 4 10 7 4 5 1 0 25 26 
9 16 12 9 14 21 0 4 81 85 
8 5 10 9 15 16 1 100 36 137 
8 4 10 9 15 10 1 121 0 122 
9 15 12 8 3 16 1 144 16 161 
8 4 10 8 3 12 0 1 4 5 
8 4 10 10 18 6 4 196 16 216 
9 14 12 8 3 13 1 121 1 123 
8 4 10 8 3 13 0 1 9 10 
8 6 10 8 4 10 0 4 0 4 
8 4 10 7 4 7 1 0 9 10 
8 4 10 7 4 7 1 0 9 10 
8 4 10 7 4 7 1 0 9 10 
8 4 10 7 4 5 1 0 25 26 
8 4 10 7 4 6 1 0 16 17 
8 6 10 9 15 15 1 81 25 107 
8 11 10 9 15 11 1 121 1 123 
8 5 10 9 13 9 1 64 1 66 
8 4 10 8 3 12 0 4 4 5 
8 4 10 9 17 10 1 169 0 170 
8 4 10 8 3 13 0 1 9 10 
8 4 10 8 3 13 0 1 9 10 
8 8 11 8 4 11 0 16 0 16 
8 4 10 7 4 8 1 0 4 5 
8 4 10 7 4 8 1 0 4 5 
8 4 10 8 4 6 0 0 16 16 
8 4 10 7 4 5 1 0 25 26 
8 4 10 7 4 5 1 0 25 26 
8 14 12 9 14 20 0 0 64 64 
8 7 11 9 14 18 1 49 49 99 
9 11 11 9 14 6 0 9 25 34 
8 4 10 8 13 11 0 81 1 82 



Figure #21: Arbitrary start forward landmark recognition testing results 
Predicted Actual (p-a)2 

yc xc size yc xc size yc xc size 
ΣΣΣΣ(p-a)2 

8 4 10 8 4 6 0 0 16 16 
8 4 10 7 4 7 1 0 9 10 
8 4 10 7 4 8 1 0 4 5 
8 4 10 7 4 8 1 0 4 5 
8 6 10 7 4 10 1 4 0 5 
8 6 10 7 4 11 1 4 1 6 
8 4 10 10 18 6 4 196 16 216 
8 4 10 8 4 6 0 0 16 16 
8 4 10 7 4 7 1 0 9 10 
8 4 10 7 4 8 1 0 4 5 
8 5 10 7 4 8 1 1 4 5 
8 4 10 7 4 10 1 0 0 1 
8 7 11 8 3 13 0 16 4 20 
8 4 10 8 3 13 0 1 9 10 
8 4 10 7 4 6 1 0 16 17 
8 4 10 7 4 8 1 0 4 5 
8 4 10 7 4 8 1 0 4 5 
8 4 10 7 4 8 1 0 4 5 
8 6 11 7 4 9 1 4 4 9 
8 5 10 7 3 10 1 4 0 5 
8 5 10 8 3 10 0 4 0 4 
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Figure #22: Arbitrary start reverse landmark recognition testing results 
Predicted Actual (p-a)2 

yc xc size yc xc size yc xc size 
ΣΣΣΣ(p-a)2 

8 4 10 11 15 7 9 121 9 139 
8 4 10 7 4 5 1 0 25 26 
9 15 12 9 14 21 0 1 81 82 
8 8 11 9 15 15 1 49 16 66 
9 15 12 9 15 11 0 0 1 1 
9 12 11 8 13 11 1 1 0 2 
8 4 10 9 13 7 1 81 9 91 
8 4 10 8 4 6 0 0 16 16 
8 4 10 7 4 5 1 0 25 26 
8 4 10 7 4 5 1 0 25 26 
8 7 11 9 15 15 1 64 16 81 
8 4 10 9 14 6 1 100 16 117 
9 11 11 8 13 12 1 4 1 6 
8 5 10 9 13 7 1 64 9 74 
8 4 10 8 4 6 0 0 16 16 
8 4 10 7 4 7 1 0 9 10 
8 5 10 9 15 14 1 100 16 117 
8 8 11 9 14 17 1 36 36 73 
8 6 10 9 14 7 1 64 9 74 
8 10 11 8 12 10 0 4 1 5 
8 11 11 8 13 8 0 4 9 13 

 

6.0 Conclusions:  

 This paper has presented a method for learning to predict image-based landmarks 

for wayfinding using a multilayer neural network.  The method was evaluated by creating 

a training course, collecting training data, and using that data to train the neural network 

to predict landmarks. 

  The experimental results indicate that this is a very feasible method of 

predicting landmarks.  Current experiments have shown good results, but with a few 

outlying results.  One approach to address improve performance would be to train the 

network on more landmark data. Our goal is to construct a system that continually learns 

landmark positions and locations.  



 The landmarks used in this example were fairly simple.  Our goal was to apply 

this qualitative, image-based approach to landmark recognition in a Search and Rescue 

application. Our next step is to use landmarks that are more representative of that 

applications. 

To increase performance, a Beowulf cluster can also be used not only to learn the 

appropriate weights for the neural network, but also to predict the next landmark location.  

A socket can be opened between the PC running the robot and the Beowulf cluster, thus 

allowing transmission of data between components. 

Finally, this work has just used visual information. However, we believe that a 

combination of sonar and visual information would be more useful for representing and 

predicting the kind of landmarks we expect to see in our application. 

 

7.0 References: 

[1] C. Olson, Landmark Selection for Terrain Matching, IEEE Int. Conf. On Robotics 
and Automation, San Francisco, CA, 2000 
[2] R. Arkin, Behavior-Based Robotics, MIT Press, Cambridge, MA, 2000 
[3] R. Sim and G. Dudek, Learning Visual Landmarks for Pose Estimation, Centre for 
Intelligent Machines, McGill University, Montreal, Canada, 1999 
[4] M. Mata, J. M. Armingol, Learning Visual Landmarks for Mobile Robot Navigation, 
Division of Systems Engineering and Automation, Madrid, Spain, 2002 
[5] G. Bianco, A. Zelinksy, M. Lehrer, Visual Landmark Learning, Verona, Italy; 
Canberra, Australia; Zurich, Switzerland, 2000 
[6] S. Thrun, Bayesian Landmark Learning for Mobile Robot Localization, Computer 
Science Department and Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 
1997 
[7] C. Wellington, A. Stentz, Online Adaptive Rough-Terrain Navigation in Vegetation, 
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 2004 
[8] L. Fausett, Fundamentals of Neural Networks, Prentice-Hall, Englewood Cliffs, NJ, 
1994 
[9] A. Jacoff, E. Messina, J. Evans, A Standard Test Course for Urban Search and 
Rescue Robots, Performance Metrics for Intelligent Systems Workshop, 2000 


